Microwave Absorption Performance of Single-Layer and Multi-Layer Structures Prepared by CNTs/Fe3O4 Nonwoven Materials

Author:

Zhan Rong,Zhang JiaqiaoORCID,Gao Qiang,Jia Qi,Zhang Zhixiang,Zhang Guangyu,Gu Wenyan

Abstract

Electromagnetic radiation can cause serious harm to the human body, such as the rise in body temperature and the decrease in immune function. In this study, the carbon nanotubes (CNTs)/Fe3O4 nonwovens were used to prepare wearable flexible absorbing materials. First, the single-layer absorbing structures were prepared by hot rolling, dipping, and film fabrication, respectively. Then, the single-layer structures were combined to form the multi-layer absorbing structures. By testing and analyzing the absorbing performance of various structures in the X-band frequency range, the optimum combination scheme was found, together with a good reflection loss value of CNTs/Fe3O4 nonwoven material. The experiment results displayed that the single-layer hot-rolled nonwovens modified by CNTs have the best wave absorbing performance. Its minimum reflection loss of −18.59 dB occurred at 10.55 GHz, and the efficient frequency occurred at 8.86–12.40 GHz. The modified film can significantly improve the absorbing performance of multi-layer structures. In addition, the absorbing performance was closely related to both the place where the absorbing film was introduced and the type of absorbing fillers. When the film-forming CNTs (FC) film was located at the bottom layer of the multi-layer structure, the hot rolled CNTs hot rolled mixed reagent film forming CNTs (HC-HM-FC) structure constructed exhibited the best absorbing effects. Its minimum reflection loss can reach −33 dB, and the effective absorbing frequency range covered half of the X-band.

Funder

Jiangsu Overseas Research and Training Program for University Prominent Young and Mid-dle-aged Teachers and Presidents

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3