Affiliation:
1. School of Textile and Clothing, Nantong University, Nantong 226019, China
2. School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Abstract
In order to develop carbonyl iron-enhanced electromagnetic wave-absorbing composites, this paper utilizes two different morphologies of carbonyl iron powder (CIP), spherical and flake-like, which are blended with aqueous polyurethane (PU) in three different ratios to prepare impregnating solutions. Polyester (PET) needle-punched nonwoven materials are impregnated with these solutions to produce electromagnetic wave-absorbing composites. First, electromagnetic parameters of the two CIP particle types, spherical carbonyl iron (SCIP) and flake-like carbonyl iron (FCIP), are tested with the coaxial method, followed by calculation of the results of their electromagnetic wave absorption performance. Next, the composites are subjected to microscopic morphology observation, tensile testing, and arched frame method electromagnetic wave absorption performance testing. The results indicate that the microwave absorption performance of FCIP is significantly better than that of SCIP. The minimum reflection loss value for F3, a kind of FCIP-modified nonwoven fabric, at the thickness of 1 mm, at 18 GHz is −17 dB. This value is even better than the calculated RL value of CIP at the thickness of 1 mm. The anisotropic shape of flake-like magnetic materials is further strengthened when adhering to the surface of PET fiber material. Additionally, the modified composites with carbonyl iron exhibit higher tensile strength compared with pure PET. The addition of fibrous skeletal materials is expected to enhance the impedance matching of flake-like magnetic particles, forming a wearable and microwave-absorbing composite.
Funder
Natural Science Foundation of the Higher Education Institutions of Jiangsu Province
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献