Transport Mechanism of Enhanced Performance in an Amorphous/Monoclinic Mixed-Phase Ga2O3 Solar-Blind Deep Ultraviolet Photodetector

Author:

Liu Haowen,Li Honglin,Zhou Shuren,Zhang Hong,Fan Shiqiang,Cui Yuting,Kong Chunyang,Ye Lijuan,Xiong Yuanqiang,Li WanjunORCID

Abstract

Recently, as an emerging material, ultrawide bandgap Ga2O3 has been investigated extensively in solar-blind deep-ultraviolet (DUV) photodetectors (PDs). High sensitivity and signal-to-noise ratio of PDs are essential for the detection of solar-blind DUV signals; however, such factors are often not mutually compatible. In the present study, an amorphous/monoclinic homogeneous mixed-phase structure was demonstrated to be significantly beneficial in enhancing the comprehensive performance of Ga2O3 solar-blind DUV PDs, especially with respect to sensitivity and the signal-to-noise ratio. Further experimental and theoretical findings provide insights on the transport mechanism of enhanced performance in the mixed-phase Ga2O3 solar-blind DUV PD. For effectively separating the photogenerated carriers, a type-II band alignment between amorphous and crystalline Ga2O3 can be exploited. Furthermore, the change of the barrier height of the mixed-phase interface also has a significant impact on the transport properties of the mixed-phase Ga2O3 PD. Additionally, the potential applications of mixed-phase Ga2O3 PD in high-voltage corona discharge were explored, and clear and stable corona discharge signals were obtained. The results of the present study may promote understanding of DUV photoelectronic devices with various mixed-phase Ga2O3 materials and provide an efficient approach for promoting comprehensive performance in future solar-blind detection applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Science and Technology Research Project of Chongqing Education Committee

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3