Additive Manufacturing of Compositionally-Graded AISI 316L to CoCrMo Structures by Directed Energy Deposition

Author:

Sommer NiklasORCID,Kluge Philipp,Stredak Florian,Eigler SaschaORCID,Hill Horst,Niendorf ThomasORCID,Böhm StefanORCID

Abstract

In the present study, compositionally-graded structures of AISI 316L and CoCrMo alloy are manufactured by powder-based laser-beam directed energy deposition (DED-LB). Through a process-integrated adjustment of powder flow, in situ alloying of the two materials becomes feasible. Thus, a sharp and a smooth transition with a mixture of both alloys can be realized. In order to investigate the phase formation during in situ alloying, a simulation approach considering equilibrium calculations is employed. The findings reveal that a precise compositional as well as functional gradation of the two alloys is possible. Thereby, the chemical composition can be directly correlated with the specimen hardness. Moreover, phases, which are identified by equilibrium calculations, can also be observed experimentally using scanning electron microscopy (SEM) and energy-dispersive X-ray-spectroscopy (EDS). Electron backscatter diffraction (EBSD) reveals epitaxial grain growth across the sharp transition region with a pronounced <001>-texture, while the smooth transition acts as nucleus for the growth of new grains with <101>-orientation. In light of envisaged applications in the biomedical sector, the present investigation demonstrates the high potential of an AISI 316L/CoCrMo alloy material combination.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference37 articles.

1. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing;Gibson,2015

2. Additive Manufacturing—General Principles—Terminology (ISO/ASTM DIS 52900:2018),2018

3. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder

4. Highly Anisotropic Steel Processed by Selective Laser Melting

5. Labelling additively manufactured parts by microstructural gradation – advanced copy-proof design

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3