Structural Evolution in the RE(OAc)3 · 2AcOH Structure Type. A Non-Linear, One-Dimensional Coordination Polymer with Unequal Interatomic Rare Earth Distances

Author:

Haase MarkusORCID,Rissiek Philipp,Gather-Steckhan Marianne,Henkel Felix,Reuter Hans

Abstract

The existing range of the centrosymmetric, triclinic RE(OAc)3 · 2AcOH structure type has been extended for RE = Eu and Gd while the structure data of the Nd- and Sm-compounds have been revised and corrected, respectively, using low temperature (T = 100 K), well resolved (2θmax = 56°), highly redundant SCXRD data in order to evaluate the structural evolution within this class of acetic acid solvates by statistical methods. Within the nine-fold mono-capped square-antiprismatic coordination spheres of the RE3+ ions, RE-O distances decrease as a result of lanthanide contraction; some with different rates depending on the coordination modes (2.11/2.21) of the acetate ions. The experimental data show that the internal structural parameters of the acetate ions also correlate with their coordination modes. Both acetic acid molecules act as hydrogen bond donors but only one as monodentate ligand. The geometries of the hydrogen bonds reveal that they are strongly influenced by the size of the rare earth atom. The non-linear, one-dimensional coordination polymer propagates with unequal RE···RE distances along the a-axis. Rods of the coordination polymer are arranged in layers congruently stacked above each other with the hydrogen bonded acetic acid molecules as filler in between. In most cases, data fitting is best described in terms of a quadratic rather than a linear regression analysis.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3