Internal OH− induced cascade quenching of upconversion luminescence in NaYF4:Yb/Er nanocrystals

Author:

Feng Yansong,Li Zhi,Li Qiqing,Yuan Jun,Tu Langping,Ning Lixin,Zhang HongORCID

Abstract

AbstractInternal hydroxyl impurity is known as one of the main detrimental factors affecting the upconversion (UC) efficiency of upconversion luminescence (UCL) nanomaterials. Different from surface/ligand-related emission quenching which can be effectively diminished by, e.g., core/shell structure, internal hydroxyl is easy to be introduced in synthesis but difficult to be quantified and controlled. Therefore, it becomes an obstacle to fully understand the relevant UC mechanism and improve UC efficiency of nanomaterials. Here we report a progress in quantifying and large-range adjustment of the internal hydroxyl impurity in NaYF4 nanocrystals. By combining the spectroscopy study and model simulation, we have quantitatively unraveled the microscopic interactions underlying UCL quenching between internal hydroxyl and the sensitizers and activators, respectively. Furthermore, the internal hydroxyl-involved UC dynamical process is interpreted with a vivid concept of “Survivor effect,” i.e., the shorter the migration path of an excited state, the larger the possibility of its surviving from hydroxyl-induced quenching. Apart from the consistent experimental results, this concept can be further evidenced by Monte Carlo simulation, which monitors the variation of energy migration step distribution before and after the hydroxyl introduction. The new quantitative insights shall promote the construction of highly efficient UC materials.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3