Abstract
In this study, we present a new configuration of the recently reported optofluidic platform exploiting liquid crystals reorientation in lithium niobate channels. In order to avoid the threshold behaviour observed in the optical control of the device, we propose microchannels realized in a x-cut crystal closed by a z-cut crystal on the top. In this way, the light-induced photovoltaic field is not uniform inside the liquid crystal layer and therefore the conditions for a thresholdless reorientation are realized. We performed simulations of the photovoltaic effect based on the well assessed model for Lithium Niobate, showing that not uniform orientation and value of the field should be expected inside the microchannel. In agreement with the re-orientational properties of nematic liquid crystals, experimental data confirm the expected thresholdless behaviour. The observed liquid crystal response exhibits two different regimes and the response time shows an unusual dependence on light intensity, both features indicating the presence of additional photo-induced fields appearing above a light intensity of 107 W/m2.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献