Light‐Induced Virtual Electrodes for Microfluidic Droplet Electro‐Coalescence

Author:

Zamboni Riccardo1ORCID,Sebastián‐Vicente Carlos2ORCID,Denz Cornelia13ORCID,Imbrock Jörg1ORCID

Affiliation:

1. Institute of Applied Physics University of Münster Corrensstr. 2/4 48149 Münster Germany

2. Departamento de Física de Materiales and Instituto Nicolás Cabrera Universidad Autónoma de Madrid c/ Francisco Tomás y Valiente 7 Madrid 28049 Spain

3. Physikalisch‐Technische Bundesanstalt (PTB) Bundesallee 100 D‐38116 Braunschweig Germany

Abstract

AbstractElectro‐coalescence is the fusion phenomenon between a pair or more microfluidic droplets that are immersed in an immiscible medium under an electric field. This technique is frequently used to merge confined droplets in surfactant‐stabilized microfluidic emulsions using local electric fields. Despite the necessity of miniaturized electrodes, this method has proven highly successful in microfluidics and lab‐on‐a‐chip applications. Miniaturized electrodes severely curtail the spatial and temporal flexibility of the electric potential, thus hindering real‐time and flexible operation and leading to high production costs. The current study addresses this problem with reconfigurable electric field potential by light‐driven functional virtual electrodes. These electrodes are light‐induced on a non‐centrosymmetric ferroelectric photovoltaic crystal placed below a microfluidic droplet channel. The photovoltaic effect in the crystal is responsible for the space charge distributions that act as virtual electrodes, whose evanescent field is screened by free charges into the two liquids inside the channel. A numerical model is developed to describe the evolution of the evanescent electric field causing electro‐coalescence. Based on this prediction, two coalescence processes occur at two different timescales and with different numbers of droplets involved. Controlled exposure time modulation allows either rapid on‐demand coalescence of droplet pairs or breakup of the entire emulsion.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3