Development of an Actuator for Translatory Movement by Means of a Detented Switching Shaft Based on a Shape Memory Alloy Wire for Repeatable Mechanical Positioning

Author:

Schmelter Tobias,Theren Benedict,Fuchs Sebastian,Kuhlenkötter Bernd

Abstract

Actuators based on the shape memory effect have recently become more and more economically important due to the many advantages of shape memory alloys (SMAs), such as their high energy density. SMAs are usually used to control the end/maximum positions, thus the actuators always move between two positions. The repeatable control of intermediate positions has so far proven difficult, because in most cases, external sensors are necessary to determine the length of the SMA element. Additionally control strategies for SMA actuators are rather complex due to the non-linear behavior of this material. The SMA actuator presented here is able to control intermediate positions with repeatable accuracy without the need of a separate control technology. The integrated control unit is based on a mechanical principle using a shaft with a circumference groove. This groove has a height profile that turns the shafts rotation, generated by the SMA, into a translational movement. Therefore, the SMA wire generates a partial stroke at each complete activation, turning the shaft partially. With several activation cycles in a row, the stroke adds up until reaching the maximum. A further activation cycle of the wire resets the actuators stroke to its initial position. Each part of the stroke can, thereby, be controlled precisely and repeatedly within the scope of each complete cycle of the actuator. Based on an integrated ratchet, each stroke of the actuator can hold energy free.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference39 articles.

1. An experimental investigation on shape memory polymer and metallic stents under bending and radial compression

2. Shape Memory Alloy Engineering. For Aerospace, Structural and Biomedical Applications,2015

3. A review of shape memory alloy research, applications and opportunities

4. Adaptronics and Smart Structures. Basics, Materials, Design, and Applications;Janocha,2007

5. Recent Development of Shape Memory Alloys and Engineering Actuator Application;Butera;Actuator,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3