Rapid and Reversible Morphing to Enable Multifunctionality in Robots

Author:

Wilcox Brittan T.1,Joyce John1,Bartlett Michael D.12ORCID

Affiliation:

1. Department of Mechanical Engineering Soft Materials and Structures Lab Virginia Tech Blacksburg VA 24061 USA

2. Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA

Abstract

Biological organisms are extraordinary in their ability to change physical form to perform different functions. Mimicking these capabilities in engineered systems has the potential to create multifunctional robots that adapt form and function on‐demand for search and rescue, environmental monitoring, and transportation. Organisms are able to navigate such unstructured environments with the ability to rapidly change shape, move swiftly in multiple locomotion modes, and do this efficiently and reversibly without external power sources, feats which are difficult for robots. Herein, a bio‐inspired latch‐mediated, spring‐actuated (LaMSA) morphing mechanism is harnessed to near‐instantaneously and reversibly reconfigure a multifunctional robot to achieve driving and flying configurations. This shape change coupled with a combined propeller/wheel leverages the same motors and electronics for both flying and driving, providing efficiency of morphing and locomotion for completely untethered operation. The adaptive robotic vehicle can move through confined spaces and rough terrain which are difficult to pass by driving or flying alone, and expands the potential range through power savings in the driving mode. This work provides a powerful scheme for LaMSA in robots, in which controlled, small‐scale LaMSA systems can be integrated as individual components to robots of all sizes to enable new functionalities and enhance performance.

Funder

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3