Abstract
Curved glass is widely used in 3C industry, and the market demand is increasing gradually. Glass molding process (GMP) is a high-precision, high-efficiency 3D glass touch panel processing technology. In this study, the processing parameters of fingerprint lock glass panels were deeply analyzed. This paper first introduces the molding process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Firstly, it introduces the forming process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Secondly, the simulation model of a fingerprint lock glass plate was simulated by MSC. Marc software. The stress relaxation model and structure relaxation model are used in the model, and the heat transfer characteristics of glass mold are combined to accurately predict the forming process of glass components. The effects of molding temperature, heating rate, holding time, molding pressure, cooling rate and other process parameters on product quality characteristics (residual stress and shape deviation) were analyzed through simulation experiments. The results show that, in a certain range, the residual stress is inversely proportional to the bending temperature and heating rate, and is directly proportional to the cooling rate, while the shape deviation decreases with the increase of temperature and heating rate. When the cooling rate decreases, the shape deviation first decreases and then increases. Furthermore, a verification experiment is designed to verify the reliability of the simulation results by measuring and calculating the surface roughness of the formed products.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Reference38 articles.
1. On the New challenges of fingerprint identification technology;Li;J. Liaoning Police Acad.,2012
2. Manufacturing Technology of Optical Plastic Aspheric Surface;Xin,2005
3. Development and application of optical glass;Wang;J. Appl. Opt.,2005
4. Research on ultra-precision aspheric grinding technology;Chen,2011
5. Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献