Simulation and Experimental Study on the Precision Molding of Irregular Vehicle Glass Components

Author:

Chen Zhijun1,Hu Shunchang2,Zhang Shengfei2,Zhang Qingdong1,Zhang Zhen3ORCID,Ming Wuyi24

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, Zhengzhou 450002, China

3. School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

4. Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, China

Abstract

The high level of stress and dimension deviation induced by glass molding are the main causes of the low yield rate of large, irregular glass components on vehicles. To solve this issue, a numerical model of large glass component molding was established in this study, which aimed to analyze the dominant factors of molding quality and achieve a synergistic balance between quality characteristics and energy consumption. The results show that molding temperature is the dominant factor affecting the energy consumption and residual stress, and the molding pressure is the main factor affecting the dimension deviation. Furthermore, the NSGA-II optimization algorithm was used to optimize the maximum residual stress, dimension deviation, and energy consumption with the numerical results. The combination of a heating rate of 1.95 °C/s, holding time of 158 s, molding temperature of 570 °C, molding pressure of 34 MPa, and cooling rate of 1.15 °C/s was determined to be the optimized scheme. The predictive error of the numerical result, based on the optimized scheme, was experimentally verified to be less than 20%. It proved the accuracy of the model in this study. These results can provide guidance for the subsequent precision molding of large, irregular glass components.

Funder

National Natural Science Foundation of China

uangdong Basic and Applied Basic Research Foundation

Henan Province Key Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3