Predicting Perovskite Performance with Multiple Machine-Learning Algorithms

Author:

Li Ruoyu,Deng Qin,Tian Dong,Zhu DaoyeORCID,Lin Bin

Abstract

Perovskites have attracted increasing attention because of their excellent physical and chemical properties in various fields, exhibiting a universal formula of ABO3 with matching compatible sizes of A-site and B-site cations. In this work, four different prediction models of machine learning algorithms, including support vector regression based on radial basis kernel function (SVM-RBF), ridge regression (RR), random forest (RF), and back propagation neural network (BPNN), are established to predict the formation energy, thermodynamic stability, crystal volume, and oxygen vacancy formation energy of perovskite materials. Combined with the fitting diagrams of the predicted values and DFT calculated values, the results show that SVM-RBF has a smaller bias in predicting the crystal volume. RR has a smaller bias in predicting the thermodynamic stability. RF has a smaller bias in predicting the formation energy, crystal volume, and thermodynamic stability. BPNN has a smaller bias in predicting the formation energy, thermodynamic stability, crystal volume, and oxygen vacancy formation energy. Obviously, different machine learning algorithms exhibit different sensitivity to data sample distribution, indicating that we should select different algorithms to predict different performance parameters of perovskite materials.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3