Machine Learning in Perovskite Solar Cells: Recent Developments and Future Perspectives

Author:

Bansal Nitin Kumar12,Mishra Snehangshu1,Dixit Himanshu1,Porwal Shivam1,Singh Paulomi3,Singh Trilok12ORCID

Affiliation:

1. School of Energy Science and Engineering IIT Kharagpur Kharagpur West Bengal 721302 India

2. Department of Energy Science and Engineering IIT Delhi Hauz Khas Delhi New Delhi 110016 India

3. School of Nanoscience and Nanotechnology IIT Kharagpur Kharagpur West Bengal 721302 India

Abstract

Within a short period of time, perovskite solar cells (PSC) have attracted paramount research interests among the photovoltaic (PV) community. Usage of machine learning (ML) into PSC research is significantly accelerated their holistic understanding of device requisite properties. ML techniques are increasingly employed to discover stable perovskite materials, optimize device architecture and processing, and analyze PSC characterization data. This review provides an in‐depth exploration of ML applications in PSC advancement through an analysis of existing literature. The review commences with an introduction to the ML workflow, detailing each step, followed by concise overviews of perovskite materials and PSC operation. Later sections explore the diverse ways ML contributes to PSC development, which ranges from the optoelectronic property prediction of perovskites, discovery of novel perovskites, PSC device structure optimization, and comprehensive PSC analyses. The challenges impeding PSC commercialization are discussed, along with ML's potential to mitigate them. The review concludes by highlighting current limitations in employing ML for PSC research and suggests potential solutions. It also outlines prospective research directions for ML applications in PSC research, aiming to develop highly efficient and stable PSCs.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3