Mineral Characterization in Human Body: A Dual Energy Approach

Author:

Martini NikiORCID,Koukou VaiaORCID,Michail ChristosORCID,Fountos George

Abstract

Kidney and uteric stones are a common cause of pain and disturbance in numerous people worldwide, as they tend to reappear. There are several studies investigating the association of urolithiasis and nephrolithiasis with atherosclerosis, as patients suffering from the former diseases were found to have been diagnosed with atherosclerotic plaques. Hydroxyapatite and calcium oxalate are the most common mineral crystals found in both kidney/uteric stones and atherosclerotic plaques’ calcifications. Even though for stones smaller than 5 mm surgery is not recommended, the knowledge of the stone composition is an important tool for the physician in order to provide better treatment for the patient. The mineral crystal characterization of atherosclerotic plaques’ calcifications smaller than 3 mm (spotty calcifications) will assist the physician to limit the possibility of myocardial infraction and stroke, as the presence of hydroxyapatite indicates possible plaque rapture. To this aim, a dual energy (DE) X-ray method was developed in this work. The calcium/phosphorus mass ratio (mCa/mP) was determined through analytical simulations and the results were verified experimentally. Both monoenergetic and polyenergetic simulation studies were implemented for hydroxyapatite, calcium carbonate and calcium oxalate with thicknesses ranging from 0.50 to 3.00 mm, at 100 μm increments, to obtain the optimized irradiation conditions. The experimental verification of the proposed method was performed using an X-ray tube combined with a high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) detector. The Mann–Whitney U test indicated that statistically significant differences were found between the different types of minerals examined for thicknesses of 0.70 mm or higher.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3