Residual Repeated Impact Strength of Concrete Exposed to Elevated Temperatures

Author:

Al-Ameri Raad A.,Abid Sallal R.ORCID,Murali G.,Ali Sajjad H.,Özakça Mustafa

Abstract

Portland cement concrete is known to have good fire resistance; however, its strength would be degraded after exposure to the temperatures of fire. Repeated low-velocity impacts are a type of probable accidental load in many types of structures. Although there is a rich body of literature on the residual mechanical properties of concrete after high temperature exposure, the residual repeated impact performance of concrete has still not been well explored. For this purpose, an experimental study was conducted in this work to evaluate the effect of high temperatures on the repeated impact strength of normal strength concrete. Seven identical concrete patches with six disc specimens each were cast and tested using the ACI 544-2R repeated impact setup at ambient temperature and after exposure to 100, 200, 300, 400, 500 and 500 °C. Similarly, six cubes and six prisms from each patch were used to evaluate the residual compressive and flexural strengths at the same conditions. Additionally, the scattering of the impact strength results was examined using three methods of the Weibull distribution, and the results are presented in terms of reliability. The test results show that the cracking and failure impact numbers of specimens heated to 100 °C reduced slightly by only 2.4 and 3.5%, respectively, while heating to higher temperatures deteriorated the impact resistance much faster than the compressive and flexural strengths. The percentage reduction in impact resistance at 600 °C was generally higher than 96%. It was also found that the deduction trend of the impact strength with temperature is more related to that of the flexural strength than the compressive strength. The test results also show that, within the limits of the adopted concrete type and conducted tests, the strength reduction after high temperature exposure is related to the percentage weight loss.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3