Impact Response of Hammerhead Pier Fibrous Concrete Beams Designed with Topology Optimization

Author:

Salaimanimagudam Meivazhisalai Parasuraman,Suribabu Covaty Ravi,Murali Gunasekaran,Abid Sallal R.

Abstract

Reducing the weight of concrete beams is a primary (beyond strength and durability) concern of engineers. Therefore, this research was directed to investigate the impact response of hammerhead pier concrete beams designed with density-based method topology optimization. The finite element topology optimization was conducted using Autodesk fusion 360 considering three different mesh sizes of 7 mm, 10 mm, and adaptive meshing. Three optimized hammerhead beam configurations; HB1, HB2, and HB3, respectively, with volume reductions greater than 50 %. In the experimental part of this research, nine beams were cast with identical size and configuration to the optimized beams. Three beams, identical to the optimized beams, were tested under static bending for verification purposes. In comparison, six more beams, as in the preceding three beams but without and with hooked end steel fibers, were tested under repeated impact load. The test results revealed that the highest flexural capacity and impact resistance at crack initiation and failure were recorded for the adaptive mesh beams (HB3 and HB3SF). The failure impact energy and ductility ratio of the beam HB3SF was higher than the beams HB1SF and HB2SF by more than 270 %. The results showed that the inclusion of steel fiber duplicated the optimized beam’s impact strength and ductility several times. The failure impact resistance of fibrous beams was higher than their corresponding plain beams by approximately 2300 to4460 %, while their impact ductility ratios were higher by 6.0 to 18.1 times.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3