A New Approach to Direct Friction Stir Processing for Fabricating Surface Composites

Author:

Almazrouee AbdullaORCID,Al-Fadhalah Khaled,Alhajeri Saleh

Abstract

Friction stir processing (FSP) is a green fabrication technique that has been effectively adopted in various engineering applications. One of the promising advantages of FSP is its applicability in the development of surface composites. In the current work, a new approach for direct friction stir processing is considered for the surface fabrication of aluminum-based composites reinforced with micro-sized silicon carbide particles (SiC), eliminating the prolonged preprocessing stages of preparing the sample and filling the holes of grooves. The proposed design of the FSP tool consists of two parts: an inner-threaded hollow cylindrical body; and a pin-less hollow shoulder. The design is examined with respect to three important tool processing parameters: the tilt angle of the tool, the tool’s dispersing hole, and the tool’s plunge depth. The current study shows that the use of a dispersing hole with a diameter of 6 mm of and a plunge depth of 0.6 mm, in combination with a tilting angle of 7°, results in sufficient mixing of the enforcement particles in the aluminum matrix, while still maintaining uniformity in the thickness of the composite layer. Metallographic examination of the Al/SiC surface composite demonstrates a uniform distribution of the Si particles and excellent adherence to the aluminum substrate. Microhardness measurements also show a remarkable increase, from 38.5 Hv at the base metal to a maximum value of 78 Hv in the processed matrix in the surface composites layer. The effect of the processing parameters was also studied, and its consequences with respect to the surface composites are discussed.

Funder

Kuwait University

Public Authority for Applied Education and Training

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference42 articles.

1. A Review on Use of Aluminium Alloys in Aircraft Components;Jawalkar;i-Manag. J. Mater. Sci.,2015

2. Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy;Karthikeyan;J. Appl. Sci.,1991

3. Friction stir processing: a novel technique for fabrication of surface composite

4. High strain rate superplasticity in a friction stir processed 7075 Al alloy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3