The Use of Ashes in Surface Metal Matrix Composites Produced by Friction Stir Processing

Author:

Iwaszko Józef1ORCID,Kudła Krzysztof2,Sajdak Marcin3

Affiliation:

1. Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland

2. Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 21 Armii Krajowej Ave., 42-200 Czestochowa, Poland

3. Faculty of Environmental and Energy Engineering, Silesian University of Technology, 18 Konarskiego Ave., 44-100 Gliwice, Poland

Abstract

The article presents an assessment of the possibility of using ashes from the combustion of coal and biomass as a reinforcing phase in metal matrix composites. The composite surface layer was produced by means of the FSP (friction stir processing) method, using an original hole solution with a shifted working zone of the pin. The composite matrix was AA7075 alloy. The obtained composite was subjected to microscopic observations, tribological tests, and hardness measurements. The microscopic examinations revealed favorable changes in the microstructure, in particular, strong refinement of the grains, uniform distribution of the reinforcing phase, and good bonding of the particles of this phase with the matrix material. Changes in the microstructure resulted in a significant increase in the hardness (from 36 to 41% depending on the type of reinforcing phase) and wear resistance (from 24.1 to 32.9%), despite partial dissolution of the intermetallic phases. It was found that the effect of strengthening the matrix and the uniformity of the distribution of the reinforcing phase depend on the physicochemical properties of the used powders, especially on the shape and size of the particles. The research shows that the use of ashes as a reinforcing phase in composites is fully justified.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3