Author:
Chen Haiyan,Nai Xin,Zhao Shuai,Lu Decai,Shen Zhikang,Li Wenya,Cao Jian
Abstract
Ti3SiC2 ceramic and copper were successfully vacuum brazed using Ag-Cu-Ti filler and Ag-Cu-Ti filler with copper mesh, respectively. In this study, the effects of copper mesh and brazing parameters on the interface microstructure and mechanical properties of the joints were systematically studied. The results revealed that the typical interfacial microstructure of joint was Ti3SiC2 ceramic/Ti5Si3 + TiC + Ti2Cu + Ti3Cu/Ag (s, s) + Cu (s, s)/eutectic Ag-Cu + TiSiCu/Cu. A maximum shear strength of joint obtained at a brazing temperature of 870 °C and a holding time of 10 min can reached up to 66.3 ± 1.2 MPa, which was 34.7% higher than that without copper mesh. The improvement of mechanical property was attributed to the extraordinary plasticity of copper mesh, which reduced the residual stress caused by the difference in the coefficient of thermal expansion at the interface of joints. As the brazing temperature and holding time further increased, the shear strength of joints decreased due to the excessively thick reaction layer of intermetallic compounds.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献