Abstract
This paper introduces a novel multi-converter-based unified power quality conditioner (MCB-UPQC). Three optimization methods are proposed based on the traditional UPQC: (1) The shunt converter is substituted with multi-modular parallel converters. Hence, the reactive power and harmonic currents can be increased greatly, which are suitable for low-voltage high-current distribution systems. (2) The series converters consist of three H-bridge inverters, and each of the H-bridge inverters is controlled separately. The control strategy is easier to achieve and can improve the control performance of voltage regulation under unbalanced voltage sag or swell. (3) A three-phase four-leg (3P4L) converter is connected to the common DC bus of the proposed UPQC to connect the renewable energy and energy storage system. The detailed mathematical models of shunt and series converters are analyzed, respectively. A multi-proportional resonant (PR) controller is presented in the voltage regulation and reactive power compensation control algorithms. The simulation results verify the feasibility of the control algorithms. Finally, the experimental platform is established, and the experimental results are presented to verify the validity and superiority of the proposed topology and algorithms.
Funder
Jiangsu Planned Projects for Postdoctoral Research Funds
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献