Comparative Performance of UPQC Control System Based on PI-GWO, Fractional Order Controllers, and Reinforcement Learning Agent

Author:

Nicola Marcel1ORCID,Nicola Claudiu-Ionel1ORCID,Sacerdoțianu Dumitru1,Vintilă Adrian1

Affiliation:

1. Research and Development Department, National Institute for Research, Development and Testing in Electrical Engineering—ICMET Craiova, 200746 Craiova, Romania

Abstract

In this paper, based on a benchmark on the performance of a Unified Power Quality Conditioner (UPQC), the improvement of this performance is presented comparatively by using Proportional Integrator (PI)-type controllers optimized by a Grey Wolf Optimization (GWO) computational intelligence method, fractional order (FO)-type controllers based on differential and integral fractional calculus, and a PI-type controller in tandem with a Reinforcement Learning—Twin-Delayed Deep Deterministic Policy Gradient (RL-TD3) agent. The main components of the UPQC are a series active filter and an Active Parallel Filter (APF) coupled to a common DC intermediate circuit. The active series filter provides the voltage reference for the APF, which in turn corrects both the harmonic content introduced by the load and the VDC voltage in the DC intermediate circuit. The UPQC performance is improved by using the types of controllers listed above in the APF structure. The main performance indicators of the UPQC-APF control system for the controllers listed above are: stationary error, voltage ripple, and fractal dimension (DF) of the VDC voltage in the DC intermediate circuit. Results are also presented on the improvement of both current and voltage Total harmonic distortion (THD) in the case of, respectively, a linear and nonlinear load highly polluting in terms of harmonic content. Numerical simulations performed in a MATLAB/Simulink environment demonstrate superior performance of UPQC-APF control system when using PI with RL-TD3 agent and FO-type controller compared to classical PI controllers.

Funder

Ministry of Research, Innovation, and Digitization of Romania as part of the NUCLEU Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3