Abstract
This study aimed to investigate the removal of β-hexachlorocyclohexane (β-HCH) at realistic concentration levels (10 µg/L) in different plant species in constructed wetlands (Acorus calamus, Canna indica, Thalia dealbata, and Pontederia cordata) and the structure of the rhizosphere microbial community response of each group during summer and winter. Results showed that all groups of constructed wetlands had very good decontamination efficiency against β-HCH in water (90.86–98.17%). The species that most efficiently purified β-HCH in water was A. calamus in summer (98.17%) and C. indica in winter (96.64%). Substrate sorption was found to be the major pathway for β-HCH removal from water in the constructed wetlands. The ability of the wetland plants to absorb and purify β-HCH was limited, and C. indica had the strongest absorptive capacity among the four plant species. The mean β-HCH removal from the matrix of the planted plants increased by 5.8% compared with that of the control treatment (unplanted plants). The average β-HCH content in the plant rhizosphere substrate was 4.15 µg/kg lower than that in the non-rhizosphere substrate. High-throughput sequencing analysis revealed significant differences (P < 0.05) in the Chao1 and ACE indices of microbes in the substrate of four wetlands during summer and winter. At the genus level, the constructed wetlands with vegetation plantations showed higher microbial abundance than the constructed wetlands without vegetation plantations. In winter, the bacterial community structure of each constructed wetland was quite different, but no dominant flora in the bacterial community structure obviously changed. In summer, the bacterial community structure at the same stage was relatively small. The abundance of Actinobacteria and Sphingomonas remarkably increased over time in summer.
Funder
the National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献