Abstract
The main contribution of this paper is to develop a new flowmeter fault detection approach based on optimized non-singleton type-3 (NT3) fuzzy logic systems (FLSs). The introduced method is implemented on an experimental gas industry plant. The system is modeled by NT3FLSs, and the faults are detected by comparison of measured end estimated signals. In this scheme, the detecting performance depends on the estimation and modeling performance. The suggested NT3FLS is used because of the existence of a high level of measurement errors and uncertainties in this problem. The designed NT3FLS with uncertain footprint-of-uncertainty (FOU), fuzzy secondary memberships and adaptive non-singleton fuzzification results in a powerful tool for modeling signals immersed in noise and error. The level of non-singleton fuzzification and membership parameters are tuned by maximum correntropy (MC) unscented Kalman filter (KF), and the rule parameters are learned by correntropy KF (CKF) with fuzzy kernel size. The suggested learning algorithms can handle the non-Gaussian noises that are common in industrial applications. The various types of flowmeters are investigated, and the effect of common faults are examined. It is shown that the suggested approach can detect the various faults with good accuracy in comparison with conventional approaches.
Funder
Ministry of Science and Technology (MOST), Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献