Self-Healing Nanocomposites—Advancements and Aerospace Applications

Author:

Kausar Ayesha123ORCID,Ahmad Ishaq123,Maaza Malik2,Bocchetta Patrizia4ORCID

Affiliation:

1. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710060, China

2. UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa

3. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan

4. Department of Innovation Engineering, University of Salento, Edificio La Stecca, via per Monteroni, 73100 Lecce, Italy

Abstract

Self-healing polymers and nanocomposites form an important class of responsive materials. These materials have the capability to reversibly heal their damage. For aerospace applications, thermosets and thermoplastic polymers have been reinforced with nanocarbon nanoparticles for self-healing of structural damage. This review comprehends the use of self-healing nanocomposites in the aerospace sector. The self-healing behavior of the nanocomposites depends on factors such as microphase separation, matrix–nanofiller interactions and inter-diffusion of polymer–nanofiller. Moreover, self-healing can be achieved through healing agents such as nanocapsules and nanocarbon nanoparticles. The mechanism of self-healing has been found to operate via physical or chemical interactions. Self-healing nanocomposites have been used to design structural components, panels, laminates, membranes, coatings, etc., to recover the damage to space materials. Future research must emphasize the design of new high-performance self-healing polymeric nanocomposites for aerospace structures.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Self‐Healing System for Polydicyclopentadiene Thermosets;Advanced Materials;2023-12-20

2. A comprehensive study on the advancements of self-healing materials;Reference Module in Materials Science and Materials Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3