Piezoresistive Sensing Approaches for Structural Health Monitoring of Polymer Composites—A Review

Author:

Nauman SaadORCID

Abstract

Structural health monitoring (SHM) is an emerging paradigm of real-time in situ structural evaluation for the detection of damage and structural degradation. This is achieved while the structure is kept in-service as against traditional non-destructive evaluation (NDE) techniques which require scheduled interventions while the structure is kept offline. SHM offers great advantages over traditional regimens of condition monitoring (CM) by improving structural reliability and safety through timely detection of structural defects also known as “diagnosis”. Polymeric composite materials offer the unique opportunity of integrating different phases for designing self-sensing smart systems capable of self-diagnosis. Polymers are unique in the sense that they can be designed in various configurations as they generally have facile manufacturing procedures. Among other properties, piezoresistance is the one that can be detected in composites in real-time as a function of strain. Conductive polymers including intrinsic and extrinsic conductive polymers can be used to induce piezoresistivity in composites. Careful design procedures can be adopted to maximize the sensitivity of these piezoresistive composites in order to fully exploit the potential of this property for SHM. Various manufacturing/integration strategies can be employed to effectively use piezoresistance in composites for structural health monitoring. These include self-sensing in carbon fiber-reinforced composites, use of surface deposited/mounted sensing films and patterns, integration of filaments and yarns during reinforcement manufacturing or lay-up and impregnation of reinforcements with piezoresistive matrices. A comprehensive review of these techniques is presented with the view of their utility in the SHM of composites. A selection criterion for these techniques is also presented based on sensitivity, manufacturing method and detection capability.

Publisher

MDPI AG

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3