Evaluating the Dynamics of Bluetooth Low Energy Based COVID-19 Risk Estimation for Educational Institutes

Author:

Aljohani Abdulah Jeza,Shuja JunaidORCID,Alasmary WaleedORCID,Alashaikh AbdulazizORCID

Abstract

COVID-19 tracing applications have been launched in several countries to track and control the spread of viruses. Such applications utilize Bluetooth Low Energy (BLE) transmissions, which are short range and can be used to determine infected and susceptible persons near an infected person. The COVID-19 risk estimation depends on an epidemic model for the virus behavior and Machine Learning (ML) model to classify the risk based on time series distance of the nodes that may be infected. The BLE technology enabled smartphones continuously transmit beacons and the distance is inferred from the received signal strength indicators (RSSI). The educational activities have shifted to online teaching modes due to the contagious nature of COVID-19. The government policy makers decide on education mode (online, hybrid, or physical) with little technological insight on actual risk estimates. In this study, we analyze BLE technology to debate the COVID-19 risks in university block and indoor class environments. We utilize a sigmoid based epidemic model with varying thresholds of distance to label contact data with high risk or low risk based on features such as contact duration. Further, we train multiple ML classifiers to classify a person into high risk or low risk based on labeled data of RSSI and distance. We analyze the accuracy of the ML classifiers in terms of F-score, receiver operating characteristic (ROC) curve, and confusion matrix. Lastly, we debate future research directions and limitations of this study. We complement the study with open source code so that it can be validated and further investigated.

Funder

Umm Al-Qura University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3