Abstract
Polyimide is a high-performance engineering polymer with outstanding thermomechanical properties. Because of its inherent fire-retardant properties, polyimide nanocomposite is an excellent material for packaging electronic devices, and it is an attractive electrode material for batteries and supercapacitors. The fire-retardant behavior of polyimide can be remarkably improved when polyimide is reinforced with multilayered graphene sheets. Differential scanning calorimetry and thermogravimetric analysis were used to study the heat of decomposition and gravimetric decomposition rate, respectively, of polyimide-graphene nanocomposites. Polyimide/graphene nanocomposites containing 10, 20, 30, 40, and 50 wt.% of multilayered graphene sheets were heated at a rate of 10 and 30 °C/min in air and in nitrogen atmosphere, respectively. The rate of mass loss was found to remarkably decrease by up to 198% for nanocomposites containing 50 wt.% of graphene. The enthalpy change resulting from the decomposition of the imide ring was found to decrease by 1166% in nitrogen atmosphere, indicating the outstanding heat-shielding properties of multilayered graphene sheets due to their high thermal conductivity. Graphene sheets are believed to form a continuous carbonaceous char layer that protects the imide ring against decomposition, hence decreasing initial mass loss. The enthalpy changes due to combustion, obtained from differential scanning calorimetry, were used to calculate the theoretical heat release rates, a major parameter in the determination of flammability of polymers. The heat release rate decreased by 62% for composites containing 10 wt.% of graphene compared to the neat polyimide matrix. Polyimide has a relatively lower heat of combustion as compared with graphene. However, graphene significantly decreases the mass loss rates of polyimide. The combined interaction of graphene and polyimide led to an overall decrease in the heat release rate. It is noted that both mass loss rate and heat of combustion are important factors that contribute to the rate of heat released.
Funder
U.S. Department of Defense
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献