Novel Polyimide-block-poly(dimethyl siloxane) copolymers: Effect of time on the synthesis and thermal properties

Author:

Xiao Shengdong1,Iroh Jude O1ORCID

Affiliation:

1. Mechanical and Materials Engineering Department, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA

Abstract

Polyimide-block-poly(dimethyl siloxane) copolymer was synthesized by a two-step process, initiated by coupling anhydride terminated poly(amic acid), AT-PAA with amino terminated poly(dimethyl siloxane), (NH2)2-PDMS to form poly(amic acid)-block-poly(dimethyl siloxane). The resulting copolymer is then thermally treated to produce polyimide-block-poly(dimethyl siloxane), PI-PDMS. Because of the high glass transition temperature, Tg of polyimide, it is usually cured at a high temperature of about 300°C for over 2.5 h. Copolymerization of polyimide with polysiloxane, reduces the imidization temperature while maintaining high thermomechanical properties. A series of instruments were used to monitor the progress of copolymerization. The time-based analysis of the product of copolymerization enables the optimization of the structure and properties of the copolymers. The chemical structure and composition of the copolymer were studied by Fourier Transform Infrared Spectroscopy, (FT-IR). The incorporation of PDMS blocks into the copolymer and the degree of imidization of the polyimide block increased with increasing reaction time. The change in the viscosity of the copolymerizing solution was monitored by simple shear viscometry conducted with the Brookfield Viscometer. The reported increase in solution viscosity with increasing copolymerization time is associated with increasing molecular weight of the copolymer. The intrinsic viscosity of the copolymer solution was measured as a function of copolymerization time and it was found that the intrinsic viscosity of the copolymer solution increased with increasing reaction time. The glass transition temperature (Tg) and the thermal stability of the copolymer were determined by differential scanning calorimetry, DSC and thermogravimetric analysis, and TGA, respectively. Between 25°C and 420°C, the copolymers synthesized in this study show two glass transition temperatures due to the polyimide, PI block at around 380°C and another peak associated with PDMS plasticized polyimide at about 290–300°C. The two Tg peaks observed in the DSC thermogram are believed to be indicative of the structure of a block copolymer. TGA analysis shows that the thermoxidative stability of the copolymers increased with increasing reaction time, due to the incorporation of increased amount of PDMS unit into the copolymer. The combination of increasing molecular weight of copolymer, higher degree of imidization of polyimide blocks and enhanced thermoxidative stability may translate into improved flame retardancy of copolymers. This suggested enhancement in flame retardancy in air atmosphere, is believed to be due the incorporated PDMS blocks, which can be converted into silica, SiO2, a recognized thermally stable material.

Funder

Dod STTR Phase I grant

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3