Construction of a Measurement System with GPS RTK for Operational Control of Street Lighting

Author:

Jaskowski PiotrORCID,Tomczuk PiotrORCID,Chrzanowicz Marcin

Abstract

Street lighting should realise normative illuminance levels throughout the roadway. The determination of the illuminance level of a road requires the use of a measurement technique based on classic point measurements at a specific grid of measurement points. Classical stationary measurements using the method indicated in the prescriptive requirements are time-consuming and labor-intensive. The authors of the article have presented a concept of a measurement system that could be used to partially automate road lighting measurements and increase their universality. The proposed measurement system uses the simultaneous measurement of illuminance values from lux meters located on the roof of the vehicle. The measurement is carried out while the vehicle is driving on a lit road, and the illuminance values are localized using a global GPS satellite location system equipped with RTK corrections. The use of GPS RTK localization data corrections allowed the measurement results to be unambiguously assigned to post-measurement fields. On the basis of the collected measurement data, with the use of terrain maps, it is possible to determine in detail the illuminance parameters on the surveyed road sections. The paper presents the construction of a measurement system for the mobile measurement of street lighting intensity using a GPS RTK receiver, along with verification of its correct operation. The correctness of the system’s operation was confirmed on the basis of the Measurement System Analysis (MSA) method. The calculations performed confirmed an R&R result of 11.14%. The proposed solution allows data on the lighting parameters of the surveyed road section to be obtained in a quick and repeatable manner. As a result, it is possible to make a quick assessment of the street lighting condition of the entire road section. The proposed system has been verified under field conditions and the repeatability of the results obtained has been confirmed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3