Author:
Moayedi Hossein,Le Van Bao
Abstract
Heating and cooling systems account for a considerable portion of the energy consumed for domestic reasons in Europe. Burning fossil fuels is the main way to produce this energy, which has a detrimental effect on the environment. It is essential to consider a building’s characteristics when determining how much heating and cooling is necessary. As a result, a study of the related buildings’ characteristics, such as the type of cooling and heating systems required for maintaining appropriate indoor air conditions, can help in the design and construction of energy-efficient buildings. Numerous studies have used machine learning to predict cooling and heating systems based on variables that include relative compactness, orientation, overall height, roof area, wall area, surface area, glazing area, and glazing area distribution. Fuzzy logic, however, is not used in any of these methods. In this article, we study a fuzzy logic approach, i.e., HHO−ANFIS (combination of Harris hawks optimization and adaptive neuro-fuzzy interface system), to predict the heating load in residential buildings and investigate the feasibility of this technique in predicting the heating load. Fuzzy techniques obtain perfect results. The analysis results show that the HHO−ANFIS with a population size of 400, the highest value of R2 (0.98709 and 0.98794), and the lowest value of RMSE (0.08769 and 0.08281) in the training and testing dataset, respectively, can predict the heating load with high accuracy. According to the high value of R2 (98%) and low value of RMSE, HHO−ANFIS can be used in predicting the heating load of residential buildings.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction