A Neural Network Trained by Multi-Tracker Optimization Algorithm Applied to Energy Performance Estimation of Residential Buildings

Author:

Gong Yu1ORCID,Zoltán Erzsébet Szeréna2ORCID,Gyergyák János2

Affiliation:

1. Marcel Breuer Doctoral School, Faculty of Engineering and Information Technology, University of Pécs, Boszorkány u. 2, H-7624 Pécs, Hungary

2. Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Boszorkány u. 2, H-7624 Pécs, Hungary

Abstract

Energy performance analysis in buildings is becoming more and more highlighted, due to the increasing trend of energy consumption in the building sector. Many studies have declared the great potential of soft computing for this analysis. A particular methodology in this sense is employing hybrid machine learning that copes with the drawbacks of single methods. In this work, an optimized version of a popular machine learning model, namely feed-forward neural network (FFNN) is used for simultaneously predicting annual thermal energy demand (ATED) and annual weighted average discomfort degree-hours (WADDH) by analyzing eleven input factors that represent the building circumstances. The optimization task is carried out by a multi-tracker optimization algorithm (MTOA) which is a powerful metaheuristic algorithm. Moreover, three benchmark algorithms including the slime mould algorithm (SMA), seeker optimization algorithm (SOA), and vortex search algorithm (VSA) perform the same task for comparison purposes. The accuracy of the models is assessed using error and correlation indicators. Based on the results, the MTOA (with root mean square errors 2.48 and 5.88, along with Pearson correlation coefficients 0.995 and 0.998 for the ATED and WADHH, respectively) outperformed the benchmark techniques in learning the energy behavior of the building. This algorithm could optimize 100 internal variables of the FFNN and acquire the trend of ATED and WADHH with excellent accuracy. Despite different rankings of the four algorithms in the prediction phase, the MTOA (with root mean square errors 9.84 and 95.96, along with Pearson correlation coefficients 0.972 and 0.997 for the ATED and WADHH, respectively) was still among the best, and altogether, the hybrid of FFNN-MTOA is recommended for promising applications of building energy analysis in real-world projects.

Funder

Faculty of Engineering and Information Technology, University of Pécs, Hungary

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3