Development of a Multiple-Drought Index for Comprehensive Drought Risk Assessment Using a Dynamic Naive Bayesian Classifier

Author:

Kim Hyeok,Park Dong-HyeokORCID,Ahn Jae-Hyun,Kim Tae-WoongORCID

Abstract

Korea has made various efforts to reduce drought damage; however, socio-economic damage has increased in recent years due to climate change, which has led to increasing frequency and intensity of drought. In South Korea, because precipitation is concentrated in the summer, drought damage will be significant in the event of failure of water resources management. Seasonal and regional imbalances in precipitation have contributed to recent extreme droughts in South Korea. In addition, population growth and urbanization have led to increased water use and contributed to water shortage. Drought risk analysis must address multiple contributing factors and comprehensively assess the effects or occurrence of future droughts, which are essential for planning drought mitigation to cope with actual droughts. Drought mitigation depends on the water supply capacity during dry spells. In this study, a dynamic naive Bayesian classifier-based multiple drought index (DNBC-MDI) was developed by combining the strengths of conventional drought indices and water supply capacity. The DNBC-MDI was applied to a bivariate drought frequency analysis to evaluate hydrologic risk of extreme droughts. In addition, future changes of the risk were investigated according to climate change scenarios. As a result, the drought risk had a decreasing trend from the historic period of 1974–2016 to the future period of 2017–2070, then had an increasing trend in the period of 2071–2099.

Funder

Ministry of Interior and Safety

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference34 articles.

1. Climate change 2014: Synthesis report;Pachauri,2014

2. Little change in global drought over the past 60 years

3. Drought Monitoring and Early Warning: Concepts, Progress and Future Challenges;Wilhite,2006

4. Experts Agree on a Universal Drought Index to Cope with Climate Risks,2009

5. Projection in Future Drought Hazard of South Korea Based on RCP Climate Change Scenario 8.5 Using SPEI

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3