Development of a Deep Learning-Based Prediction Model for Water Consumption at the Household Level

Author:

Kim Jongsung,Lee Haneul,Lee MyungjinORCID,Han HeechanORCID,Kim DonghyunORCID,Kim Hung SooORCID

Abstract

The importance of efficient water resource supply has been acknowledged, and it is essential to predict short-term water consumption in the future. Recently, it has become possible to obtain data on water consumption at the household level through smart water meters. The pattern of these data is nonlinear due to various factors related to human activities, such as holidays and weather. However, it is difficult to accurately predict household water consumption with a nonlinear pattern with the autoregressive integrated moving average (ARIMA) model, a traditional time series prediction model. Thus, this study used a deep learning-based long short-term memory (LSTM) approach to develop a water consumption prediction model for each customer. The proposed model considers several variables to learn nonlinear water consumption patterns. We developed an ARIMA model and an LSTM model in the training dataset for customers with four different water-use types (detached houses, apartment, restaurant, and elementary school). The performances of the two models were evaluated using a test dataset that was not used for model learning. The LSTM model outperformed the ARIMA model in all households (correlation coefficient: mean 89% and root mean square error: mean 5.60 m3). Therefore, it is expected that the proposed model can predict customer-specific water consumption at the household level depending on the type of use.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3