Abstract
The Dujiangyan Irrigation System (DIS), located in the western portion of the Chengdu Plain at the transitional junction between the Qinghai-Tibet Plateau and Sichuan Basin, has been in operation for about 2300 years. The system automatically uses natural topographical and hydrological features and provides automatic water diversion, sediment drainage and intake flow discharge control, thus preventing disastrous events in the region in a ‘natural’ way. Using a numerical modeling approach, this study aims to investigate the reasons behind this natural behavior of the system and provide a better understanding of the complex mechanisms which have caused the sustainability of the DIS for over two millennia. For this purpose, a two-phase flow model based on the Shallow Water Equations (SWEs) is developed to simulate the fluid and sediment motions in the DIS. A coupled explicit-implicit technique based on the Finite Element Method is applied for the fluid flow and a Sediment Mass (SM) model in the framework of the Lagrangian particle method is proposed to simulate the sediment motion under different flow discharge conditions. The results show how different components of the DIS make full use of the hydrodynamic and topographical characteristics of the river to effectively discharge sediment and excess flood to the downstream and create an environmentally sustainable irrigation system.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献