Numerical assessment of hydro‐morphodynamics affected by altered upstream discharge in the Dujiangyan reach of the Min River, China

Author:

Wang Xie‐Kang1ORCID,Cheng Kai1,Luo Ming1,Xu Ze‐Xing1,Yan Xu‐Feng1ORCID

Affiliation:

1. State Key Lab of Hydraulics and Mountain River Engineering Sichuan University Chengdu China

Abstract

AbstractThe Dujiangyan Irrigation Project, a globally well‐known hydraulic engineering project, is significant for the Chengdu Plain. In recent years, due to water supply scarcity in the Chengdu Plain and increasing flood disasters in the Min River, the Moertan Reservoir was constructed to alleviate these pressures. The construction resulted in a mid‐reach embankment along the Min River that forced channel narrowing and triggered changes in channel morphology, flow and bedload transport. This study utilised field measurements coupled with physical and numerical models to simulate the resulting characteristics of flow, bedload transport and topographic change for different flood frequencies in the Dujiangyan reach following emplacement of the Moertan Reservoir. The results indicated that following extensive hydraulic regulation, the flow‐bedload transport characteristics and morphodynamics exhibited similar behaviours across different flood frequencies. The presence of a mid‐channel gravel‐cobble shoal (GCS) divided the flow into multiple branches, with the right branch systematically dominating flow and bedload transport across all flood frequencies. Further downstream, the Fish Mouth Levee effectively diverted nearly equal amounts of flow through the Inner and Outer rivers. In contrast, approximately 20% and 80% of the bedload was transported through the Inner and Outer rivers, respectively. The findings were beneficial in providing a reference for the flood season management of the Dujiangyan Irrigation Project and the maintenance of associated hydraulic engineering projects.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3