Study on the Hierarchical Predictive Control of Semiconductor Silicon Single Crystal Quality Based on the Soft Sensor Model

Author:

Wan Yin12ORCID,Liu Ding12,Ren Jun-Chao12,Wu Shi-Hai12

Affiliation:

1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China

Abstract

Silicon single crystal (SSC) quality monitoring and control has been a hot research topic in the field of the Czochralski crystal growth process. Considering that the traditional SSC control method ignores the crystal quality factor, this paper proposes a hierarchical predictive control strategy based on a soft sensor model for online control of SSC diameter and crystal quality. First, the proposed control strategy considers the V/G variable (V is the crystal pulling rate, and G is the axial temperature gradient at the solid–liquid interface), a factor related to crystal quality. Aiming at the problem that the V/G variable is difficult to measure directly, a soft sensor model based on SAE-RF is established to realize the online monitoring of the V/G variable and then complete hierarchical prediction control of SSC quality. Second, in the hierarchical control process, PID control of the inner layer is used to quickly stabilize the system. Model predictive control (MPC) of the outer layer is used to handle system constraints and enhance the control performance of the inner layer. In addition, the SAE-RF-based soft sensor model is used to monitor the crystal quality V/G variable online, thereby ensuring that the output of the controlled system meets the desired crystal diameter and V/G requirements. Finally, based on the industrial data of the actual Czochralski SSC growth process, the effectiveness of the proposed crystal quality hierarchical predictive control method is verified.

Funder

National Major Scientific Instrument Development Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3