Author:
Lin ,Li ,Lu ,Sun ,Chen ,Wei ,Ming
Abstract
A multi-channel light emitting diode (LED)-induced fluorescence system combined with a convolutional neural network (CNN) analytical method was proposed to classify the varieties of tea leaves. The fluorescence system was developed employing seven LEDs with spectra ranging from ultra-violet (UV) to blue as excitation light sources. The LEDs were lit up sequentially to induce a respective fluorescence spectrum, and their ability to excite fluorescence from components in tea leaves were investigated. All the spectral data were merged together to form a two-dimensional matrix and processed by a CNN model, which is famous for its strong ability in pattern recognition. Principal component analysis combined with k-nearest-neighbor classification was also employed as a baseline for comparison. Six grades of green tea, two types of black tea and one kind of white tea were verified. The result proved a significant improvement in accuracy and showed that the proposed system and methodology provides a fast, compact and robust approach for tea classification.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献