Development of a multispectral fluorescence LiDAR for point cloud segmentation of plants

Author:

Zheng Kexin,Lin Hongze1ORCID,Hong Xuekai,Che Hao,Ma Xiaorui2,Wei Xiaopeng2,Mei Liang

Affiliation:

1. Hangzhou Dianzi University

2. Dalian University of Technology

Abstract

The accelerating development of high-throughput plant phenotyping demands a LiDAR system to achieve spectral point cloud, which will significantly improve the accuracy and efficiency of segmentation based on its intrinsic fusion of spectral and spatial data. Meanwhile, a relatively longer detection range is required for platforms e.g., unmanned aerial vehicles (UAV) and poles. Towards the aims above, what we believe to be, a novel multispectral fluorescence LiDAR, featuring compact volume, light weight, and low cost, has been proposed and designed. A 405 nm laser diode was employed to excite the fluorescence of plants, and the point cloud attached with both the elastic and inelastic signal intensities that was obtained through the R-, G-, B-channels of a color image sensor. A new position retrieval method has been developed to evaluate far field echo signals, from which the spectral point cloud can be obtained. Experiments were designed to validate the spectral/spatial accuracy and the segmentation performance. It has been found out that the values obtained through the R-, G-, B-channels are consistent with the emission spectrum measured by a spectrometer, achieving a maximum R2 of 0.97. The theoretical spatial resolution can reach up to 47 mm and 0.7 mm in the x- and y-direction at a distance of around 30 m, respectively. The values of recall, precision, and F score for the segmentation of the fluorescence point cloud were all beyond 0.97. Besides, a field test has been carried out on plants at a distance of about 26 m, which further demonstrated that the multispectral fluorescence data can significantly facilitate the segmentation process in a complex scene. These promising results prove that the proposed multispectral fluorescence LiDAR has great potential in applications of digital forestry inventory and intelligent agriculture.

Funder

National Natural Science Foundation of China

Dalian High-Level Talent Innovation Program

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Zhejiang Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3