Affiliation:
1. Hangzhou Dianzi University
2. Dalian University of Technology
Abstract
The accelerating development of high-throughput plant phenotyping demands a LiDAR system to achieve spectral point cloud, which will significantly improve the accuracy and efficiency of segmentation based on its intrinsic fusion of spectral and spatial data. Meanwhile, a relatively longer detection range is required for platforms e.g., unmanned aerial vehicles (UAV) and poles. Towards the aims above, what we believe to be, a novel multispectral fluorescence LiDAR, featuring compact volume, light weight, and low cost, has been proposed and designed. A 405 nm laser diode was employed to excite the fluorescence of plants, and the point cloud attached with both the elastic and inelastic signal intensities that was obtained through the R-, G-, B-channels of a color image sensor. A new position retrieval method has been developed to evaluate far field echo signals, from which the spectral point cloud can be obtained. Experiments were designed to validate the spectral/spatial accuracy and the segmentation performance. It has been found out that the values obtained through the R-, G-, B-channels are consistent with the emission spectrum measured by a spectrometer, achieving a maximum R2 of 0.97. The theoretical spatial resolution can reach up to 47 mm and 0.7 mm in the x- and y-direction at a distance of around 30 m, respectively. The values of recall, precision, and F score for the segmentation of the fluorescence point cloud were all beyond 0.97. Besides, a field test has been carried out on plants at a distance of about 26 m, which further demonstrated that the multispectral fluorescence data can significantly facilitate the segmentation process in a complex scene. These promising results prove that the proposed multispectral fluorescence LiDAR has great potential in applications of digital forestry inventory and intelligent agriculture.
Funder
National Natural Science Foundation of China
Dalian High-Level Talent Innovation Program
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Zhejiang Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献