Modeling Fracture Propagation in a Dual-Porosity System: Pseudo-3D-Carter-Dual-Porosity Model

Author:

Al Hameli FatimaORCID,Suboyin Abhijith,Al Kobaisi MohammedORCID,Rahman Md MotiurORCID,Haroun Mohammed

Abstract

Despite the significant advancements in geomodelling techniques over the past few decades, it is still quite challenging to obtain accurate assessments of hydraulic fracture propagation. This work investigates the effect of fluid leak-off in a dual-porosity system on the hydraulic fracture propagation geometry, which, in turn, affects hydrocarbon recovery from tight and unconventional reservoirs. Fracture propagation within tight reservoirs was analyzed using the Pseudo Three-Dimensional-Carter II model for single- (P3D-C) and dual-porosity systems (P3D-C-DP). Previous studies have accounted for leak-off in single-porosity models; however, studies within dual-porosity systems are still quite limited. We present a novel approach to coupling fluid leak-off in a dual-porosity system along with a fracture-height growth mechanism. Our findings provide important insights into the complexities within hydraulic fracturing treatment design using our new and pragmatic modeling approach. The simulation results illustrate that fluid leak-off in dual-porosity systems contributes to a confined fracture half-length (xf), that is 31% smaller using the P3D-C-DP model as opposed to the single-porosity model (P3D-C). As for the fracture height growth (hf), the P3D-C-DP model resulted in a 40% shorter fracture height compared to the single-porosity model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3