Emerging advances in CO2 storativity and trappability within shale reservoirs

Author:

Hameli Fatima Al1ORCID,Belhaj Hadi1,AlDhuhoori Mohammed1,Aljaberi Faisal1

Affiliation:

1. Petroleum Engineering Department Khalifa University of Science and Technology Abu Dhabi United Arab Emirates

Abstract

AbstractGeological carbon storage and utilization is widely regarded as the most realistic method of reducing carbon emissions throughout the energy transition era. In recent times, the implementation of carbon dioxide (CO2) injection has emerged as a potential method for increasing the recovery of hydrocarbon and facilitating the interaction of CO2 in shale reservoirs. This methodology enables the mitigation of total carbon emissions released into the earth's atmosphere. The concept of using CO2 geological sequestration in unconventional shale formations seems to be a prudent approach in responding to both the growing energy demand and mandating environmental requirements simultaneously. Shale reservoirs have received significant interest in the global context because to their substantial reserves and widespread distribution. This research offers a comprehensive analysis of the essential components involved in the sequestration of CO2 in shales, therefore improving the trapping and long‐term storage of CO2. In addition, it explores the extraction of hydrocarbons in this context. Gaining a comprehensive understanding of the fundamental factors that contribute to the storativity and trappability of CO2 is crucial for improving the displacement of methane gas (CH4) during shale gas recovery. This is particularly relevant in depleted the reservoirs of shale gas, where the aim is to enhance the effectiveness of in situ CO2 sequestration while reducing the leakage risk.

Funder

Khalifa University of Science, Technology and Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3