Thermal Estimation and Thermal Design for Coupling Coils of 6.6 kW Wireless Electric Vehicle Charging System

Author:

Jiang JinhaiORCID,Lan Yu,Zhang Ziming,Zhou Xingjian,Song KaiORCID

Abstract

Wireless electric vehicle charging technology is developing in the direction of high power levels. However, more generated heat brought by higher power will accelerate the system’s aging and can even lead to damage. An excellent thermal design for the magnetic coupler can reduce each part’s maximum temperature, ensuring long-term operation reliability. Therefore, in this article, the magnetic coupler’s thermal estimation and design are studied based on a 6.6 kW wireless electric vehicle charging system. First, the calculation method of internal resistance of a litz coil, core loss, and eddy current loss of a shielding aluminum plate are studied. Considering the influence of thermal fields on material properties, each part’s power loss calculation formula is further modified to improve the accuracy. After that, heat dissipation research is carried out. The heat dissipation measures, such as filling the surface of the shielding aluminum plate with thermal conductive silicone grease, are proposed. Finally, the effectiveness of the heat dissipation measures is verified by simulation and experiments. The experiment shows that the error between the power loss value of each part calculated by simulation and measured by the experiment is less than 15%, and the maximum temperature of the magnetic coupler is controlled below 80 °C.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3