Sensor Clustering Using a K-Means Algorithm in Combination with Optimized Unmanned Aerial Vehicle Trajectory in Wireless Sensor Networks

Author:

Tran Thanh-Nam1ORCID,Nguyen Thanh-Long2ORCID,Hoang Vinh Truong3ORCID,Voznak Miroslav4ORCID

Affiliation:

1. Data Science Laboratory, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

2. Faculty of Information Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam

3. Faculty of Computer Science, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam

4. Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic

Abstract

We examine a general wireless sensor network (WSN) model which incorporates a large number of sensors distributed over a large and complex geographical area. The study proposes solutions for a flexible deployment, low cost and high reliability in a wireless sensor network. To achieve these aims, we propose the application of an unmanned aerial vehicle (UAV) as a flying relay to receive and forward signals that employ nonorthogonal multiple access (NOMA) for a high spectral sharing efficiency. To obtain an optimal number of subclusters and optimal UAV positioning, we apply a sensor clustering method based on K-means unsupervised machine learning in combination with the gap statistic method. The study proposes an algorithm to optimize the trajectory of the UAV, i.e., the centroid-to-next-nearest-centroid (CNNC) path. Because a subcluster containing multiple sensors produces cochannel interference which affects the signal decoding performance at the UAV, we propose a diagonal matrix as a phase-shift framework at the UAV to separate and decode the messages received from the sensors. The study examines the outage probability performance of an individual WSN and provides results based on Monte Carlo simulations and analyses. The investigated results verified the benefits of the K-means algorithm in deploying the WSN.

Funder

Ministry of Education, Youth and Sports

Large Infrastructures for Research, Experimental Development and Innovations

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3