Deep Learning for Concrete Crack Detection and Measurement

Author:

Nyathi Mthabisi Adriano1ORCID,Bai Jiping1ORCID,Wilson Ian David1ORCID

Affiliation:

1. Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK

Abstract

Concrete structures inevitably experience cracking, which is a common form of damage. If cracks are left undetected and allowed to worsen, catastrophic failures, with costly implications for human life and the economy, can occur. Traditional image processing techniques for crack detection and measurement have several limitations, which include complex parameter selection and restriction to measuring cracks in pixels, rather than more practical units of millimetres. This paper presents a three-stage approach that utilises deep learning and image processing for crack classification, segmentation and measurement. In the first two stages, custom CNN and U-Net models were employed for crack classification and segmentation. The final stage involved measuring crack width in millimetres by using a novel laser calibration method. The classification and segmentation models achieved 99.22% and 96.54% accuracy, respectively, while the mean absolute error observed for crack width measurement was 0.16 mm. The results demonstrate the adequacy of the developed crack detection and measurement method, and shows the developed deep learning and laser calibration method promotes safer, quicker inspections that are less prone to human error. The method’s ability to measure cracks in millimetres provides a more insightful assessment of structural damage, which is, in comparison to traditional pixel-based measurement methods, a significant improvement for practical field applications.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HBIM for Conservation of Built Heritage;ISPRS International Journal of Geo-Information;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3