HBIM for Conservation of Built Heritage

Author:

Alshawabkeh Yahya1,Baik Ahmad2,Miky Yehia23ORCID

Affiliation:

1. Department of Conservation Science, Queen Rania Faculty of Tourism and Heritage, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

2. Geomatics Department, Architecture and Planning Faculty, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Civil Engineering Department, Faculty of Engineering, Aswan University, Aswan 81528, Egypt

Abstract

Building information modeling (BIM) has recently become more popular in historical buildings as a method to rebuild their geometry and collect relevant information. Heritage BIM (HBIM), which combines high-level data about surface conditions, is a valuable tool for conservation decision-making. However, implementing BIM in heritage has its challenges because BIM libraries are designed for new constructions and are incapable of accommodating the morphological irregularities found in historical structures. This article discusses an architecture survey workflow that uses TLS, imagery, and deep learning algorithms to optimize HBIM for the conservation of the Nabatean built heritage. In addition to creating new resourceful Nabatean libraries with high details, the proposed approach enhanced HBIM by including two data outputs. The first dataset contained the TLS 3D dense mesh model, which was enhanced with high-quality textures extracted from independent imagery captured at the optimal time and location for accurate depictions of surface features. These images were also used to create true orthophotos using accurate and reliable 2.5D DSM derived from TLS, which eliminated all image distortion. The true orthophoto was then used in HBIM texturing to create a realistic decay map and combined with a deep learning algorithm to automatically detect and draw the outline of surface features and cracks in the BIM model, along with their statistical parameters. The use of deep learning on a structured 2D true orthophoto produced segmentation results in the metric units required for damage quantifications and helped overcome the limitations of using deep learning for 2D non-metric imagery, which typically uses pixels to measure crack widths and areas. The results show that the scanner and imagery integration allows for the efficient collection of data for informative HBIM models and provide stakeholders with an efficient tool for investigating and analyzing buildings to ensure proper conservation.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3