Challenges in Sustainable Degradability of Bio-Based and Oxo-Degradable Packaging Materials during Anaerobic Thermophilic Treatment

Author:

Zaborowska MagdalenaORCID,Bernat KatarzynaORCID,Pszczółkowski BartoszORCID,Wojnowska-Baryła Irena,Kulikowska Dorota

Abstract

Although the manufacturers labelled commercially available bio-based products as biodegradable, there are discrepancies concerning the time frame for their sustainable biodegradation and methane production. Starch-based, polylactic acid-based and oxo-degradable foils were anaerobically treated in thermophilic condition (55 °C, 100 days). The effect of alkaline pretreatment on foils degradation was also investigated. To examine changes in their mechanical and physical properties, static tensile tests and microscopic analyses, FTIR and surface roughness analyses were conducted. Despite the thermophilic condition, and the longer retention time compared to that needed for biowaste, a small amount of methane was produced with bio-based foils, even after pretreatment (ca. 30 vs. 50 L/kg VS) and foils only lost functional and mechanical properties. The pieces of bio-based materials had only disintegrated, which means that digestate may become contaminated with fragments of these materials. Thus, providing guidelines for bio-based foil treatment remains a challenge in waste management.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Plastics—The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Datahttps://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf

2. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update

3. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion

4. Bio‐ and oxo‐degradable plastics: Insights on facts and challenges

5. Abiotic and biotic degradation of oxo-biodegradable polyethylenes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3