Numerical Analysis on the Performance of a Radiant Cooling Panel with Serpentine-Based Design

Author:

Radzai Mohammad Hakim Mohd,Yaw Chong TakORCID,Lim Chin WaiORCID,Koh Siaw Paw,Ahmad Nur Amirani

Abstract

Radiant cooling systems (RCS) are gaining acceptance as a heating, ventilation, and air conditioning (HVAC) solution for achieving adequate thermal comfort and maintaining acceptable indoor air quality inside buildings. RCS are well known for their energy-saving potential; however, serious condensation problem hinders the growth of this technology. In order to prevent the risk of condensation, the supply water temperature is kept higher than the dew point temperature of the air inside the room. The full potential of the cooling power of a radiant cooling panel is limited. Therefore, this article is on maximizing the cooling capacity of a radiant cooling panel, in terms of flow configuration. Radiant cooling panels (RCP) with different chilled water pipe configurations are designed and compared, side by side with the conventional serpentine flow configuration. The cooling performance of the radiant cooling panels is evaluated by using computational fluid dynamics (CFD) with Ansys Fluent software (Ansys 2020 R2, PA, USA). Under similar flow and operating conditions, the common serpentine flow configuration exhibits the least effective cooling performance, with the highest pressure drop across the pipe. It is concluded that the proposed designs have the potential of improving the overall efficiency of RCP in terms of temperature distribution, cooling capacity, and pressure drop.

Funder

Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3