Power Conversion System Operation to Reduce the Electricity Purchasing Cost of Energy Storage Systems

Author:

Kim Jun-MoORCID,Lee Jeong,Kim Jin-Wook,Yi Junsin,Won Chung-Yuen

Abstract

A strategy to operate a power conversion system (PCS) to minimize the electricity rate of an energy storage system (ESS) is formulated. The ESS operation method is determined considering the power management system (PMS). The primary functions include peak-cut, peak-shifting, and frequency regulation typically related to electricity rates. Thus, the battery is charged and discharged when the price is low and high, respectively, thereby monetizing the battery. However, the ESS incurs a high cost for the batteries and PCS. Therefore, ESSs that reuse electric vehicle (EV) batteries are being actively developed. Many researchers have attempted to maximize the profit of ESSs by developing algorithms to calculate the optimal ESS capacity by performing a power load analysis of electricity consumers. An ESS selected based on this calculation can be operated through the PMS. This ESS can use the battery state of charge (SoC), ranging from 10–90%, to conduct a feasibility analysis using the net present value, which reflects the current electricity rate. This feasibility analysis is performed considering the difference between the initial investment cost of the ESS and the profit obtained from the power generation of the ESS. In South Korea, many policies have been implemented to encourage the installation of ESSs. The ESS promotion policy was implemented until 2020 to reduce the electricity rate, including the contracted capacity of batteries. However, since 2021, this policy has been transformed to reduce the electricity rate based on the daily maximum power generation. Thus, the conventional method of increasing the battery capacity is not suitable, and the profitability should be increased using limited batteries. For ESSs, PCSs composed of single and parallel structures can be used. When installing a large capacity ESS, a PCS using silicon (Si) is adopted to reduce the unit cost of the PCS. The unit price of a silicon carbide (SiC) device has recently decreased significantly. Thus, in this study, a PCS using this SiC device was developed. Moreover, an algorithm was formulated to minimize the electricity rate of the ESS, and the operation of a modular type PCS based on this algorithm was demonstrated.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Renewables Global Status Report;Andre,2020

2. Grid-scale energy storage applications in renewable energy integration: A survey

3. Energy Storage Technology and Cost Characterization Report;Mongird,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3