Power Conversion System Operation Algorithm for Efficient Energy Management of Microgrids

Author:

Na Kwang-Su,Lee Jeong,Kim Jun-MoORCID,Lee Yoon-Seong,Yi Junsin,Won Chung-Yuen

Abstract

This paper investigates the operation of each power conversion system (PCS) for efficient energy management systems (EMSs) of microgrids (MGs). When MGs are linked to renewable energy sources (RESs), the reduction in power conversion efficiency can be minimized. Furthermore, energy storage systems (ESSs) are utilized to manage the surplus power of RESs. Thus, the present work presents a method to minimize the use of the existing power grid and increase the utilization rate of energy generated through RESs. To minimize the use of the existing power grid, a PCS operation method for photovoltaics (PV) and ESS used in MGs is proposed. PV, when it is directly connected as an intermittent energy source, induces voltage fluctuations in the distribution network. Thus, to overcome this shortcoming, this paper utilizes a system that connects PV and a distributed energy storage system (DESS). A PV-DESS integrated module is designed and controlled for tracking constant power. In addition, the DESS serves to compensate for the insufficient power generation of PV. The main energy storage systems (MESSs) used in MGs affect all aspects of the power management in the system. Because MGs perform their operations based on the capacity of the MESS, a PCS designed with a large capacity is utilized to stably operate the system. Because the MESS performs energy management through operations under various load conditions, it must have constant efficiency under all load conditions. Therefore, this paper proposes a PCS operation algorithm with constant efficiency for the MESS. Utilizing the operation algorithm of each PCS, this paper describes the efficient energy management of the MG and further proposes an algorithm for operating the existing power grid at the minimum level.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3