Co-Creative Problem Solving to Support Rapid Learning of Systems Knowledge Towards High-Tech Innovations: A Longitudinal Case Study

Author:

Kjørstad MarianneORCID,Muller GerritORCID,Falk Kristin

Abstract

This article explores co-creative problem solving to support rapid learning of systems knowledge in the concept phase towards innovation. We introduce the term co-creative problem solving to describe the act of collective creation between systems engineers and stakeholders during problem solving. The context of this research is a mature Norwegian industry accustomed to efficiency and risk aversion, challenged by late validation of systems design due to poor utilization of systems knowledge. We have explored co-creation between systems engineers and stakeholders such as project managers, business developers, and subject-matter experts through a longitudinal in-depth industry case in the energy domain. The primary outcome is insights into how co-creative problem solving supports rapid learning of systems knowledge in the industry case. We propose a method building on the findings from the research results to support systems engineers in similar contexts facing similar challenges.

Funder

Regionale forskningsfond Oslofjordfondet

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3